Perfect matchings in pruned grid graphs
نویسندگان
چکیده
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملBipartite Graphs and Perfect Matchings
When we think about markets creating opportunities for interaction between buyers and sellers, there is an implicit network encoding the access between buyers and sellers. In fact, there are several ways to use networks to model buyer-seller interaction, and here we discuss some of them. First, consider the case in which not all buyers have access to all sellers. There could be several reasons ...
متن کاملPerfect Matchings of Cellular Graphs
We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 tiroes the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduc...
متن کاملCounting perfect matchings in n-extendable graphs
The structural theory of matchings is used to establish lower bounds on the number of perfect matchings in n-extendable graphs. It is shown that any such graph on p vertices and q edges contains at least (n + 1)!/4[q − p − (n − 1)(2 − 3) + 4] different perfect matchings, where is the maximum degree of a vertex in G. © 2007 Elsevier B.V. All rights reserved. MSC: 05C70; 05C40; 05C75
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.11.032